Received 17 March 2006 Accepted 3 May 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hoong-Kun Fun,^a* Suchada Chantrapromma,^b* Zhong-Lin Lu^c and Xiao-Yang Gong^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^cThe Institute of Physical Chemistry, School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China

Correspondence e-mail: hkfun@usm.my, suchada.c@psu.ac.th, suchada.c@psu.ac.th, suchada.c@psu.ac.th

Key indicators

Single-crystal X-ray study T = 100 KMean $\sigma(\text{C-C}) = 0.008 \text{ Å}$ R factor = 0.049 wR factor = 0.137 Data-to-parameter ratio = 19.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(1-Methylimidazole- κN^3)[tris(2-aminoethyl)amine- $\kappa^4 N$]copper(II) bis(perchlorate)

The title complex, $[Cu(C_4H_6N_2)(C_6H_{18}N_4)](ClO_4)_2$ or $[Cu(Melm)(tren)](ClO_4)_2$ [Melm = *N*-methylimidazole and tren = tris(2-aminoethyl)amine], contains two $[Cu(Melm)-(tren)]^{2+}$ cations in the asymmetric unit with slightly different bond distances and angles. The coordination geometry of the Cu^{II} ion is distorted trigonal–bipyramidal, with three primary amine groups of the tren ligand forming the equatorial plane. The tertiary amine group and the 1-methylimidazole are in the axial positions. Intra- and intermolecular N–H···O hydrogen bonds are observed in the crystal structure, which is stabilized by these N–H···O hydrogen bonds and also weak intra- and intermolecular C–H···O interactions. Crystals of the title complex are twinned.

Comment

Complexes of tripodal ligands have attracted much attention because of their importance in coordination chemistry (Blackman, 2005), biochemistry (Ruf & Pierpont, 1998), and catalysis (Goodwin *et al.*, 2004). For example, copper(II) complexes with 2-{[bis(pyridylmethyl)amino]methyl}-4methyl-6-formylphenol are able to cleave unactivated peptide bonds from bovine serum albumin (BSA) and the thermostable enzyme Taq DNA polymerase (de Oliveira *et al.*, 2005). Dinuclear copper complexes of aliphatic tripodal amino alcohols can catalyse catechol oxidation (Jocher *et al.*, 2005). In the present paper, we report the structure of the title compound, [Cu(MeIm)(tren)][ClO₄]₂, (I).

The asymmetric unit consists of two $[Cu(MeIm)(tren)]^{2+}$ cations and four ClO_4^- anions (Fig. 1). The two cations have slightly different bond distances and angles (Table 1). The Cu^{II} ions in both cations are in a distorted trigonal-bipyramidal geometry with the three primary amine groups of the tren ligand forming the equatorial plane and the tertiary amine and the imidazole molecule occupying the axial positions. The

© 2006 International Union of Crystallography All rights reserved

Figure 1

The asymmetric unit of (I), with the atom-labelling scheme; displacement ellipsoids are drawn at the 60% probability level.

Figure 2

The crystal packing of (I), viewed down the b axis. Hydrogen bonds are shown as dashed lines.

geometry parameter τ values are 0.81 for Cu1 and 0.77 for Cu2, which indicate that the coordination geometry for two Cu^{II} ions is close to a trigonal bipyridmidal configuration (Addison *et al.*, 1984). The Cu^{II} ion is displaced from the equatorial plane towards the *N*-methylimidazole ligand, as indicated by the tren chelate angles which are less than 90° (Table 1). Bond distances to the axial Cu–N distances of the tertiary amine N atoms [*ca* 2.079 (5) Å on average] are longer than that of the Cu–N bond distances in an *N*-methylimidazole complex [*ca* 1.985 (4) Å on average], but shorter than those of the equatorial Cu–N bonds, as in most trigonal

five-coordinate Cu^{II} complexes with tren as one of the chelate ligands (Fun *et al.*, 1996; Lu *et al.*, 1997).

There are intramolecular and intermolecular $N-H\cdots O$ hydrogen bonds and $C-H\cdots O$ weak interactions between the amino groups and perchlorate anions (Fig. 2 and Table 2). These interactions stabilize the crystal structure and link the ions into a three-dimensional network.

Crystals of the title complex are twinned. Initial refinement, without recognition of the twinning problem, led to large R values. The final R values were obtained with refinement using the twin law [001/010/100] and a twin fraction of 0.471:0.529. Because of the recognition of the nature of this type of twinning from the twin law, the a and c axes were set equal in length.

Experimental

To a solution of $[Cu(tren)](ClO_4)_2$ (1 mmol, 0.408 g) in boiling EtOH–MeCN (5:1), 30 ml of *N*-methylimidazole (1.1 mmol, 0.090 g) was added. The mixture was refluxed for 3 h. After cooling to room temperature, the precipitate was filtered off by suction and dried *in vacuo* over silica. Yield 85%. Blue needle-like single crystals of (I), of X-ray diffraction quality, were obtained by slow evaporation of an EtOH–MeCN (10:1) solution of (I).

Crystal data

$Cu(C_4H_6N_2)(C_6H_{18}N_4)](ClO_4)_2$	Z = 8
$A_r = 490.80$	$D_x = 1.709 \text{ Mg m}^{-3}$
Aonoclinic, $P2_1/n$	Mo $K\alpha$ radiation
= 21.9941 (7) Å	$\mu = 1.48 \text{ mm}^{-1}$
= 7.8942 (3) Å	T = 100.0 (1) K
= 21.9941 (7) Å	Needle, blue
$B = 92.607 \ (2)^{\circ}$	$0.43 \times 0.13 \times 0.10 \text{ mm}$
$V = 3814.8 (2) \text{ Å}^3$	

Data collection

Bruker SMART APEX2 CCD areadetector diffractometer ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.794, T_{max} = 0.863$

Refinement

F

4

$R[F^{2} > 2\sigma(F^{2})] = 0.049 \qquad \qquad w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0788P)^{2}] where P = (F_{o}^{2} + 2F_{o}^{2})/3 i = 1.04 \qquad \qquad (\Delta/\sigma)_{max} = 0.001 \Delta\rho_{max} = 0.89 \text{ e } \text{Å}^{-3} \lambda_{0} = -1.04 \text{ e } \text{Å}^{-3}$	Refinement on F^2	H-atom parameters constrained
$vR(F^2) = 0.137$ where $P = (F_o^2 + 2F_c^2)/3$ $S = 1.04$ $(\Delta/\sigma)_{max} = 0.001$ 198 reflections $\Delta\rho_{max} = 0.89 \text{ e } \text{ Å}^{-3}$ 82 parameters $\Delta \rho_{max} = -1.04 \text{ e } \text{ Å}^{-3}$	$R[F^2 > 2\sigma(F^2)] = 0.049$	$w = 1/[\sigma^2(F_o^2) + (0.0788P)^2]$
$ \begin{array}{ll} z = 1.04 & (\Delta/\sigma)_{\text{max}} = 0.001 \\ 198 \text{ reflections} & \Delta\rho_{\text{max}} = 0.89 \text{ e } \text{\AA}^{-3} \\ 82 \text{ parameters} & \Delta\rho_{\text{o}} = -1.04 \text{ e } \text{\AA}^{-3} \end{array} $	$vR(F^2) = 0.137$	where $P = (F_0^2 + 2F_c^2)/3$
198 reflections $\Delta \rho_{\text{max}} = 0.89 \text{ e} \text{ Å}^{-3}$ 82 parameters $\Delta \rho_{-1} = -1.04 \text{ e} \text{ Å}^{-3}$	S = 1.04	$(\Delta/\sigma)_{\rm max} = 0.001$
82 parameters $\Delta \alpha = -1.04 \text{ e} ^{-3}$	198 reflections	$\Delta \rho_{\rm max} = 0.89 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta p_{\min} = -1.04 \text{ C A}$	82 parameters	$\Delta \rho_{\rm min} = -1.04 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Cu1-N5	1.986 (4)	Cu2-N11	1.985 (4)
Cu1-N1	2.051 (4)	Cu2-N7	2.039 (4)
Cu1-N4	2.053 (5)	Cu2-N9	2.071 (4)
Cu1-N3	2.061 (5)	Cu2-N10	2.090 (4)
Cu1-N2	2.138 (4)	Cu2-N8	2.127 (4)
	/		()
N5-Cu1-N1	177.58 (17)	N11-Cu2-N7	178.76 (17)
N1-Cu1-N4	85.04 (17)	N7-Cu2-N9	83.68 (17)
N1-Cu1-N3	83.47 (16)	N7-Cu2-N10	83.81 (16)
N1-Cu1-N2	84.00 (16)	N7-Cu2-N8	84.20 (16)

41516 measured reflections

 $R_{\rm int} = 0.053$

 $\theta_{\rm max} = 28.0^{\circ}$

9198 independent reflections 7032 reflections with $I > 2\sigma(I)$

Table 2Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2C\cdotsO11^{i}$	0.90	2.28	3.086 (6)	150
$N2-H2D\cdots O13^{ii}$	0.90	2.26	3.110 (6)	157
N3−H3C···O6 ⁱⁱⁱ	0.90	2.56	3.260 (7)	136
$N3-H3D\cdots O9^{iv}$	0.90	2.40	3.151 (7)	141
$N4-H4C\cdotsO10^{iv}$	0.90	2.22	3.072 (6)	157
$N4-H4D\cdotsO11^{i}$	0.90	2.56	3.193 (7)	128
$N8-H8B\cdots O7^{v}$	0.90	2.33	3.094 (6)	143
N8−H8C···O3	0.90	2.44	3.267 (5)	154
N8−H8C···O4	0.90	2.47	3.218 (6)	141
N9 $-H9B \cdots O8^{vi}$	0.90	2.23	3.050 (6)	152
N9−H9C···O16	0.90	2.50	3.100 (6)	125
$N9-H9C\cdots O7^{v}$	0.90	2.43	3.086 (7)	130
N10−H10D···O12	0.90	2.53	3.340 (8)	150
$N10-H10E\cdots O2^{vii}$	0.90	2.28	3.070 (6)	146
$C3-H3A\cdots O6^{iii}$	0.97	2.35	3.173 (6)	142
C3−H3B···O3	0.97	2.58	3.547 (6)	172
$C6-H6B\cdotsO1^{i}$	0.97	2.50	3.237 (6)	132
C8−H8A···O13 ^{viii}	0.96	2.56	3.360 (8)	143
C12−H12A···O12	0.97	2.53	3.426 (8)	153
$C15-H15B\cdots O14^{vi}$	0.97	2.54	3.511 (6)	177
$C17 - H17A \cdots O2^{vii}$	0.93	2.56	3.318 (7)	139
C18−H18A···O3 ^{ix}	0.93	2.52	3.377 (7)	153
$C20-H20B\cdots O2^{ix}$	0.96	2.60	3.385 (7)	140
Symmetry codes: (i)	$-x + \frac{3}{2}, y +$	$-\frac{1}{2}, -z + \frac{1}{2};$ ((ii) $-x + 1, -y$	+1, -z; (iii)

 $\begin{array}{ll} x+\frac{1}{2},-y+\frac{1}{2},z-\frac{1}{2}, & (\mathrm{i} v) & -x+\frac{3}{2},y-\frac{1}{2},-z+\frac{1}{2}, & (v) & -x+\frac{1}{2},y-\frac{1}{2},-z+\frac{1}{2}, \\ -x+\frac{1}{2},y+\frac{1}{2},-z+\frac{1}{2}; & (\mathrm{v} \mathrm{i}) & x,y+1,z; & (\mathrm{v} \mathrm{i} \mathrm{i}) & x+1,y,z; & (\mathrm{i} x) & -x+1,-y,-z. \end{array}$

H atoms attached to N atoms were initially located in a difference map to check the correctness of their positions. For the final refinement, all H atoms were placed in calculated positions, with C–H distances in the range 0.93–0.97 Å and N–H distances of 0.90 Å. The $U_{\rm iso}$ values were constrained to be $1.5U_{\rm eq}$ of the carrier atoms for the methyl H atoms and $1.2U_{\rm eq}$ of the carrier atoms for the others. The deepest residual density hole is 0.91 Å from atom Cu2.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government and Universiti Sains Malaysia for Scientific Advancement Grant Allocation (SAGA) grant No. 304/PFIZIK/653003/A118, and the China Postdoctoral Science Foundation for the support of this work.

References

Addison, A. W., Rao, T. N., Reedijk, J., Rijn, J. V. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

- Blackman, A. G. (2005). Polyhedron, 24, 1–39.
- Bruker (2005). *APEX2* (Version 1.27), *SAINT* (Version 7.12a) and *SADABS* (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Yip, B. C., Lu, Z. I., Duan, C. Y., Tian, Y. B. & You, X. Z. (1996). *Transition Met. Chem.* 21, 193–196.
- Goodwin, J. M., Olmstead, M. M. & Patten, T. E. (2004). J. Am. Chem. Soc. 126, 14352–14353.
- Jocher, C., Pape, T., Seidel, W. W., Gamez, P., Reedijk, J. & Hahn, F. E. (2005). *Eur. J. Inorg. Chem.* pp. 4914–4923.
- Lu, Z. L., Duan, C. Y., Tian, Y. P., You, X. Z., Fun, H. K. & Yip, B. C. (1997). *Transition Met. Chem.* 22, 549–552.
- Oliveira, M. C. B. de, Scarpellini, M., Neves, A., Terenzi, H., Bortoluzzi, A. J., Szpoganics, B., Greatti, A., Mangrich, A. S., De Souza, E. M., Fernandez, P. M. & Soares, M. R. (2005). *Inorg. Chem.* 44, 921–929.
- Ruf, M. & Pierpont, C. G. (1998). Angew. Chem. Int. Ed. 37, 1736-1739.
- Sheldrick, G. M. (1998). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.